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Polymer fragmentation in extensional flow
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In this paper we present an analysis of fragmentation of dilute polymer solutions in extensional flow. The
transition rate is investigated both from theoretical and computational approaches, where the existence of a
Gaussian distribution for the breaking bonds has been controversial. We give as well an explanation for the low
fragmentation frequency found in DNA experiments.
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Since the original studies of de Genrjé$ and Hinch[2] details to observe fragmentation without impeding the effi-
the investigations of dilute polymer solutions in extensionalciency of the simulation. As a result, we ignore the internal
flow has received a lot of attentidB,4]. The main objective dynamics of the beads and treat them as particles of Mass
of the present paper is to show that some of the phenomen&he geometric center of the chain is put at the center of the
such as experimentally observed Gaussian distribution ofour roll mill [16,18, where the fluid velocity vanishes. We
scission product$4], can be obtained by use of a simple focus our analysis on the partidleof the chain and assume
model. Another important point is the very small value of thethat the fluid velocityV, grows linearly as we move off the
transition-state rate obtained experimentally. This value isenter:V,=(1—2I/N)Vg. Here|Vg| is the maximal fluid
10° times smaller than the computed one using a transitionvelocity as experienced by the chain. For lakgethe chain
state theoryf5]. We believe that understanding those obserimay break instantaneously, while for smalf it may not
vations in a more simple frame may help us to get deepebreak at all.
insight into fragmentation processes of complex polymeric The equations of motion are integrated according to the
structures at the microscopic level. methodology of Langevin dynamics. More specifically, the

As early as in 1939 Kuhf6] proposed a model for poly- classical motion of a particle, sayis taken to be the Lange-
mers in which beads were connected by elastics forces. R&in equation, which consists of inertial terms, force field,
cently, Blumberg-Selingegt al.[7] have considered a model frictional drag, and noise, respectively,
where a bond was allowed to break or not. They showed that
this system could be mapped on into an lIsing-like model &
with mean-field limit describing the stretching and failure of u -

a two-dimensional solid. In the absence of experimémsy MF =F(a+u—u_y)—F(at+u—u)—yM(u—V))

in the last few years precise experiments have been per-

formed[8]), computer simulations have become a useful tool +f,(t). 1)

for modeling fragmentation. Wellaret al.[9] addressed the

question of where a chain with fixed ends is likely to break. i . . .
Doer and Taylor[10] studied the breaking of harmonic Here u, is the displacement from the eqwhbnum posmo_n
chains and some of us worked out a theory of fragmentatioRNd F(X) is the force between the nearest neighbors, which
of anharmonic chains under periodic boundary conditiondVe obtain from a 12:6 Lennard-Jones potentigh(x). Ad-
and homogeneous strginl,12,14,1% ditionally, a is the lattice parameter, such ttata) =0, and

At first sight, the fragmentation of polymers in an exten- €= —U_,(@) is the binding energy. The friction between the
sional flow sounds as an immediate generalization of thearticle and the fluid is given by yM(u,—V,), wherevy is
previous results. Nothing could be more misleading. Indeedthe friction constant. We take as being size and position
experiments on stretching of single chains in a uniform flow,independent. In order to save computer time and simplify the
held at one end by optical tweezers, show that the subje¢heory further we keep the motion parallel to the direction of
remains controversial despite its long hist¢dy16,17. the fluid velocity and suppress the transversal vibrations. We

In order to gain an insight into the process of polymerbelieve this will not affect the main results, which should
fragmentation we shall perform Langevin dynamics simula-hold for an isotropic fluid subject to a uniform velocity field.
tions of a chain withN beads of mas# in a uniform flow. For the actual computation reduced quantities are used,
The simulation model attempts to incorporate just enouglwhere the units have been renormalized to a hvds$ 1, an

equilibrium bond lengtta of 1, and a Lennard-Jonesof 1.
It follows that the reduced distance is equalri@, the re-

*Email address: armando@ucb.br duced temperature I T/ €, the reduced energy E/e, and
"Email address: fao@iccmp.br the reduced time i$/ 75, where 79=27/ wg With w, being
*Email address: uflonga@kinga.cyf-kr.edu.pl the maximal phonon frequency of the chain without stress.
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Langevin dynamics, Eql), simulates the effect of indi-
vidual solvent molecules through a fast-changing fdr¢e)
of intensityo 7, , wheren, are the random numbers. Here we
take », uniformly distributed on the intervat-1<y<1.
The value ofo depends on the time incremeft that one
uses to numerically integrate E@l). Assuming that the
Brownian force is constant in the intervalt (in practice
At=0.005ry) and taking regard of the fluctuation-
dissipation theorem we get=+6M ykgT/At. Clearly, the
nonconservative forces simulate the thermal hadj.

Before performing extensive simulations on polymer frag-
mentation we first construct simpler, effective theory, which

is a generalization to inhomogeneous strain of the one-

particle model presented in the papét4,14,19. We start
by noting that the energy necessary to pull the monokner
apart a distance from its equilibrium position is given by

Ueff(k.¢>=j§k [ULy(@a+S)+SR1+U j(a+ S+ )

(St )Rk, 2

wheres; is the “strain” at the positiorj due to the friction
with the fluid. The strain and the resulting forgg are de-
fined by the condition

j

RJ-=F(a+sj)=—«yMI:EI Vv, (3)
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FIG. 1. Effective potential for breaking of a bond at ditas a
function of the bond elongatios. The intrachain interaction is
given by a 12:6 Lennard-Jones potential and the interaction with the
fluid by a viscous force proportional to the relative velocity. Ener-
gies are in units of binding energy, distance in units of lattice con-
stanta, time is in units ofry=2m/wy, Wherew, is the maximum
phonon frequency. The chain has 100 particles and the fluid speed
at the chain’s end i¥-=0.02. We take the friction constant as
=0.250,. (a) k=50 and(b) k=30.
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rier. Before we start to compute the breaking rates for the
polymers, let us discuss briefly the main ideas of the reaction

rate theory.

Consider a set of independent particles in a metastable
wherel,=(1,N) stands for the ends of the chain where thesjtuation, for example, at the position=0 of the potential
counting starts, and is within the half segment, i.e., well of Fig. 1. The particles are in a thermal bath at the
|j —1¢/<N/2. Equations(2) and (3) define an effective po- temperatureT, smaller than the activation barri,, i.e.,

tential for the breaking process. Note from K@) that the  E_s>k,T. The probabilityp of the particle make a jump over
strongest force acts on the middle of the chain. the barrier in a time intervakt is

In Fig. 1 we plot the potentidl .¢1(k, ¢) as a function of
separationg for N=100 and for two different monomers:
k=50 (curvea) andk=30 (curveb). The first case corre-
sponds to the monomer being positioned in the middle of
chain while the second one is for the monomer located off
center. The fluid velocity i¥=0.02 and we use a moderate where 7 is the first time passage or the characteristic time.
dampingy=0.250,. As clearly seen from Fig. 1 the break- For At<r the crossing probability is small and those rare
ing process is more frequent in the middle of the chain tharevents are well described by a Poisson law. Consequently the
in any other place, and this frequency should decrease withumber of particles in the welin(t) decays asn(t)
increasing distance from the center. This observation is cor=n(0)exp(t/7). From this follows a practical way to obtain
sistent with the value of the energy barrig¢x), as a func- the characteristic time and the crossing rat=7"1: we
tion of the distancex (x<Na/2) to the middle of the chain. just have to count the number of particles in the well.

It reads

p=—, ©)

T

TABLE |. Main parameters for the effective breaking theory.
We use the effective potential to obtain the activation endfgy
and the attempt frequencyy . Here y=0.250,; the subscriptS
refers to the results obtained from simulations.

2
4.

E(X)=Ep+4a I)\(l (4)

where, for properly choseW, e.g.,Eb(N,VE)=Eb(NVF) N Ve E, = e ve w ag

(see Table)lthe parametex could be made independent of

N. 100 50 0.0606 0.0246 4.507 0.0153 0.22 0.31
Now that an effective potential for a polymer in an exten-200 100 0.0606 0.0179 8.938 0.00523 0.32 0.32

sional flow has been identified, we can study the fragmentazpo 150 0.0606 0.0193 13.37 0.00310 0.31 0.32

tion process as a generalized thermal activation over a bar
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The attempt to obtain reliable values firis the main  with C being the normalization constant akdx) given by
subject of the centennial effort, known as reaction-rateEq. (4). We define the breaking rate as the total rate to cross
theory[19—-22 which, as we shall see, is not always successall the local barriers of the breaking potential, Eg). That
ful. In order to explain the temperature dependence of as, we generalize Kramers ideas for a set of local wells to get
chemistry reaction Arrheniud 9] proposed that the reaction -
rate K would be the product of the jumping probability 7_1:T|Z1:NVK exp— BEy), 11
exp(—pBE,) (B=1/kgT) times the attempt frequenay, i.e.,
the frequency that the particle will try to jump. The Arrehe- wherer is the characteristic time for an irreversible breaking
nius law reads and

K=vexp —BEp). (6) 7K:J' v(X)P(x)dXx,

As a first approximation Arrhenius suggested thaivould
be approximately the vibration frequency of the well, v
~ V= w,l27r.

A half-century after Arrhenius, Kramef20] returned to a
rigorous analysis of the problem. First, he did a “harmoni-
zation” of the potential as

is the average of all the Kramers frequencies for the local
wells.

Unfortunately, Eq(11) is not able to account for all the
complexity of the breaking phenomena even in chains sub-
mitted to uniform straif11-15. Consequently, some few
improvements need to be done. Since the Arrhenius factor
1 exp(—BEy) is in agreement with computer simulatiofis5],

Ep— —wﬁ(x—xb)z, for x~x, we propose that only the attempt frequency must be modi-
U(x)= 2 @ fied. In this way we rewrite Eq(11) as

1 5. _

5 MwzX’, for x=~0. T="Ff.7¢. (12
We have introduced the dimensionless fadtoto take care

Herex, and w,/27 are, respectively, the coordinate and theof possible collective dynamical effects and, as we shall see,

unstable frequency at the barrier. Then he solved a Fokkejt has the “complexity” of the process. We shall call it the

Planck equation and rediscovered the Arrhenius law. Morecomplexity factor One should bear in mind that for chains

over, he found the attempt frequeneyas submitted to a homogeneous “strain” and under periodic
boundary conditionsf, would be size independent. More-

Wy 2 Yy over, if Kramers theory could be easily applied to our situa-

VKT o ot 45 ®  tion, f. would be a number of order of unity. We shall return

to f., after we present the result of our simulations.

which, for most of the cases, is of the same order as the Finally, we use Eq(10) to compute the “mean-square
Arrhenius result. Kramers main contribution was to put thedisplacement” of breaking bonds, i.e., the variance of loca-
Arrhenius law in a more fundamental framework, and to calltion where the bonds breaks, as

attention for two new points. First, it is very important to 2

understand vyhat happens near the top of thg parrier, i.e., the 0)2(:<X2>: N—kBT. (13)
unstable motion. Second, the presence of fricjomust be 8a

taken in consideratiorifor a review, see Refl21]). Since

then it was found that a large number of phenomena in phys- NOW we perform Langevin dynamics simulations by nu-
ics and chemistry follows this simple description, E6), merically integrating Eq(1) for an ensemble of chains sub-
given that the energy barrier satis,>kgT. ject to different sequences of random forces. The thermody-

Let us now turn back to our problem of polymer fragmen-namic parameters used are the same as those of the effective

tation. From a simple analysis we expect that the total breakT0del. We ask for the time needed for one of the bonds of

ing rateK will be the sum of all local Kramers rates the chain to exceed a distandgi.e., =u,—u,_,>d. The
number of survival chains(t), i.e., those whose distance

N/2 did not exceed, as function of time, is a Poisson distribu-
K=K¢= > Ki, (99  tion with a characteristic time(d). We follow the evolution
i=-N/2 of 7(d) as function ofd until we reach the distancd*,

wherer(d*) does not change anymore. This characterizes an
whereK; is the breaking rate at the sitelIn this way the irreversible evolution over the barrier, or an irreversible
parameters of Eq(8) do depend on the position along the breaking with characteristic breaking time= r(d*).
chain, and so doesy . In order to evaluate Eq9), let us In Fig. 2 we plot the logarithm of the breaking time as a
consider its continuous limit, andv,=w,(X) and w,  function of the inverse of temperature. The parameters are
= wp(X). The probabilityP(x) dx of breaking betweerand the same as in Fig. 1. Every experiment involves an en-

x4+ dx should follow the Boltzmann distribution semble of 2000 chains. We see that the figure displays an
Arrhenius law similar to that of Eq11). However, the fit
P(x)=Cexd — BE(X)], (100  predicts an activation enerdys=0.0246+0.005, while the
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FIG. 4. Dispersion of breaking bonds as function of tempera-
FIG. 2. Logarithm of breaking time as function of the inverse of ture. In order to display several temperature ranges on single graph
temperature. We use the same parameters as in Fig. 1. The graple scale the temperature i . In () the theoretical values are
displays an Arrhenius rate with activation eneigy=0.025. a=0.32 andE,=0.0606; the simulations givas=0.32+0.01. In
(b) the theoretical values are=0.205 andE,=0.0100; the simu-
calculation, given in Table I, yield§,=0.0606. The attempt lations give as=0.21+0.04. In (c) the theoretical values are
frequency vs is found to be several orders of magnitude =0.189 andE,=0.00742; the simulations gives=0.20+0.01.

smaller than the Kramers frequeney . Moreover the acti- function of position forT=0.018. The remaining chain pa-

melon energy cannot b.e .smaller thﬁg<E(x), Eq. (4) rameters are the same as in Fig. 1. In the experiment 20 000
sinceE(x) is itself the minimum possible energy for break- . : X N
chains were broken. The full curve is a Gaussian distribution

Ing at ppsmonx. C_onsequently, we shall assume that thefitted to the data, which suggests that the dispersion is indeed
energy is taken directly from the effective potential for .

: . . . in agreement with Eq13). At this point it is perhaps worth-
breakmg, E.q.(2), which expllams the arigin of the factdg while to comment on the effect of transverse fluctuations.
introduced in arad hocway in Eq.(11).

_ We expect that they do not, within our model, affect the
In Talple | we collect values of parametersEy,, andvk  distribution of breaking bonds. However, they do affect, by a
as functions ofN and V. The theoretical values are those t5ctor of the order of 2, the complexity factor. Sintgis
computed from Eqsi4)—(13). We chooseN and Ve in such  zready unknown by a factor which is at least of the order of

a way that the chains will have the same energigsand,  10%, we will not be concerned here with a full theory to
consequently, similar. The values obtained from simula- expjainf, .

tions have the subscri@

¢ o ) In Fig. 4 we collect a set of data fau‘)z(/N2 versus tem-
In Fig. 3 we show the distribution of breaking bonds as

perature. We scale the temperatureHyyin such a way that
different ranges of temperature can be visualized on the same
] graph. We use as well a large variation of the damping, i.e.,
o ] 0.lw,<vy=<1.0w,. In curve a the empty circles represent
data fory=0.25v»,, Vg=0.01, and foN=200. The remain-
ing data of this figure correspond kb= 100. Here, the empty
triangles are parametrized by=0.250, andVg=0.02, and
the full triangles are fory=0.10w, andVg=0.05. The dia-
i monds represent simulations with=1.0w, andVg=0.02.
The data combine together as an evidence for(Eg). Its
i validity is further supported by the simulations fidr=300
andV=0.00666(the corresponding data are not shown in
the figurg. Additionally, the parametes displays the cor-
rect temperature dependence and the univéssss indepen-
. dend behavior. Interestingly, remarkable agreement is ob-
tained betweelg=0.32+0.01 from the minimum square fit
and «=0.32-0.01 from the effective potentigla=0.31,
X 0.32, and 0.33; see Tablé |

FIG. 3. Distribution of breaking bonds as function of the posi-  Similar agreement is displayed by curvesndc of Fig.
tion. Parameters are as in Fig. 1 and temperafu#®.018. In the 4. For curveb, wherey=0.250, andVg=0.0237, the theo-
experiments 20 000 chains were broken. The full line is the Gauss-etical values arer=0.205 ande,=0.0100. The simulations
ian fit to the data. give @s=0.21+0.04. For curvec with y=1.0w,, Vg
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=0.006 we havea=0.189 andE,=0.00742, while the distribution of breaking bonds. Thus, deviation from Gauss-
simulations predictrg=0.20+=0.01. Finally, we shall notice ian distribution found in some experimen&| must be due

that for T—0, i.e., o4,<1, the Gaussian distribution ap- to an inhomogeneous flow, rather than the chain dynamics.
proaches a Dirac delta function centered at the middle oAs values ofa can be measured and computed in polymers,
chain. This explains some of experime[is23], where mol- it would be interesting to carry out experiments measuring

ecules are fractured in half. . both the activation energy and the bond dispersion for a
Why such perfect agreement for and such discrepant sjngle chain as function of temperature.

tive effect is in the complexity factaf; . This factor has the = iyes a simple analytical result for the dispersion of breaking
chain dynamics, and as well, complex phenomena such g,nqs of a chain in an extensional flow. It shows as well that
kink nucleation12]. Indeed we have proved that the typical y,e gifference between the computed activation energy and
distanced* to an irreversible crossing is larger to a Chainthose found from the simulations may be explained by the

than to a particle in the effective potential E@). This of complexity factorf, which is responsible for the collective

course contributes to decrease the fragmentation rate. Tl?eeffects such as memory14] and nucleation of kinks
chain dynamics creates new phenomena that need to be i io 24]_’ As supported by our simulatiori can assume val-

corporated in the reaction-rate theory. Those phenomena 98%s of the order Toto 1. This explains the result reported

et s o1 was cbiamed. fg;r::]ﬁgisn[giibmitted to Dy Odell [4], where difference between experiment and
homogeneous straiSCsubject to periodic boundary condi- theory for the_ attempt frequency IS of the same order. This
tions[15]; theref.=f.(T,S) is size independent. That is, for discrepancy is a decreasing function ofEy /kgT, when

' c e ' ! we fix E, and change the temperature, and an increasing

given temperature and strain, the ratig(N.)/7(N,) function of )
2 - . . © when we fix the temperature and charigg.
=Ny exi5(E;~E,J/N, is independent of; and, hence, it Clearly, this proves thatc is not only a function ofu, as

can be computed. The results show théll) scales withN one would expect from statistical arguments
[15], and that the effective potential provides very accurate Fracture is a complex nonlinear phenomenon, surprisingly

Xgltéeezs f?]rdaﬁtlvan%ncenle(zjrgbl:‘so).( -Irgii Iférgbe \{ﬁleuex?ff igd of complex even in one dimension. At the present state of the
pendence o cou explained by existence .art, only for homogeneous chains it is possible to obtain an

collective modes, which induce an extra coherent noise i : .
the system. This itself yields time-dependent friction and'_l\pproxmate expression fdg . A full theory for more real

modifications to the Langevin equati¢h4,15,23. Istic systems is still lacking.

In our case the fact that is precisely the same strongly =~ We would like to thank CNPq and CAPES for financial
suggests that the potential, E@), and its barrier, Eq(4), support. One of usA.M.M.) would like to thank CNPq for a
should be correct. We used as well other inverse power-lawh.D. scholarship during the realization of this work. Also
potentials and found that the results are nearly the same, losupported in part by the Polish Grant No. 5P03B05220
attempt frequency, an underestimated barrier, and a Gaussi&iBN).
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