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Polymer fragmentation in extensional flow
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In this paper we present an analysis of fragmentation of dilute polymer solutions in extensional flow. The
transition rate is investigated both from theoretical and computational approaches, where the existence of a
Gaussian distribution for the breaking bonds has been controversial. We give as well an explanation for the low
fragmentation frequency found in DNA experiments.
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Since the original studies of de Gennes@1# and Hinch@2#
the investigations of dilute polymer solutions in extensio
flow has received a lot of attention@3,4#. The main objective
of the present paper is to show that some of the phenom
such as experimentally observed Gaussian distribution
scission products@4#, can be obtained by use of a simp
model. Another important point is the very small value of t
transition-state rate obtained experimentally. This value
1025 times smaller than the computed one using a transit
state theory@5#. We believe that understanding those obs
vations in a more simple frame may help us to get dee
insight into fragmentation processes of complex polyme
structures at the microscopic level.

As early as in 1939 Kuhn@6# proposed a model for poly
mers in which beads were connected by elastics forces.
cently, Blumberg-Selingeret al. @7# have considered a mode
where a bond was allowed to break or not. They showed
this system could be mapped on into an Ising-like mo
with mean-field limit describing the stretching and failure
a two-dimensional solid. In the absence of experiments~only
in the last few years precise experiments have been
formed@8#!, computer simulations have become a useful t
for modeling fragmentation. Wellandet al. @9# addressed the
question of where a chain with fixed ends is likely to brea
Doer and Taylor@10# studied the breaking of harmoni
chains and some of us worked out a theory of fragmenta
of anharmonic chains under periodic boundary conditio
and homogeneous strain@11,12,14,15#.

At first sight, the fragmentation of polymers in an exte
sional flow sounds as an immediate generalization of
previous results. Nothing could be more misleading. Inde
experiments on stretching of single chains in a uniform flo
held at one end by optical tweezers, show that the sub
remains controversial despite its long history@8,16,17#.

In order to gain an insight into the process of polym
fragmentation we shall perform Langevin dynamics simu
tions of a chain withN beads of massM in a uniform flow.
The simulation model attempts to incorporate just enou
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details to observe fragmentation without impeding the e
ciency of the simulation. As a result, we ignore the intern
dynamics of the beads and treat them as particles of masM.
The geometric center of the chain is put at the center of
four roll mill @16,18#, where the fluid velocity vanishes. W
focus our analysis on the particlel of the chain and assum
that the fluid velocityVl grows linearly as we move off the
center:Vl5(122l /N)VF . Here uVFu is the maximal fluid
velocity as experienced by the chain. For largeVF the chain
may break instantaneously, while for smallVF it may not
break at all.

The equations of motion are integrated according to
methodology of Langevin dynamics. More specifically, t
classical motion of a particle, sayl, is taken to be the Lange
vin equation, which consists of inertial terms, force fie
frictional drag, and noise, respectively,

M
d2ul

dt2
5F~a1ul2ul 21!2F~a1ul 112ul !2gM ~ u̇l2Vl !

1 f l~ t !. ~1!

Here ul is the displacement from the equilibrium positio
andF(x) is the force between the nearest neighbors, wh
we obtain from a 12:6 Lennard-Jones potentialULJ(x). Ad-
ditionally, a is the lattice parameter, such thatF(a)50, and
e52ULJ(a) is the binding energy. The friction between th
particle and the fluid is given by2gM (u̇l2Vl), whereg is
the friction constant. We takeg as being size and positio
independent. In order to save computer time and simplify
theory further we keep the motion parallel to the direction
the fluid velocity and suppress the transversal vibrations.
believe this will not affect the main results, which shou
hold for an isotropic fluid subject to a uniform velocity field

For the actual computation reduced quantities are us
where the units have been renormalized to a massM of 1, an
equilibrium bond lengtha of 1, and a Lennard-Jonese of 1.
It follows that the reduced distance is equal tor /a, the re-
duced temperature iskBT/e, the reduced energy isE/e, and
the reduced time ist/t0, wheret052p/v0 with v0 being
the maximal phonon frequency of the chain without stres
©2001 The American Physical Society01-1
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Langevin dynamics, Eq.~1!, simulates the effect of indi-
vidual solvent molecules through a fast-changing forcef l(t)
of intensitysh l , whereh l are the random numbers. Here w
take h l uniformly distributed on the interval21<h l<1.
The value ofs depends on the time incrementDt that one
uses to numerically integrate Eq.~1!. Assuming that the
Brownian force is constant in the intervalDt ~in practice
Dt50.005t0) and taking regard of the fluctuation
dissipation theorem we gets5A6MgkBT/Dt. Clearly, the
nonconservative forces simulate the thermal bath@11#.

Before performing extensive simulations on polymer fra
mentation we first construct simpler, effective theory, wh
is a generalization to inhomogeneous strain of the o
particle model presented in the papers@11,14,15#. We start
by noting that the energy necessary to pull the monomek
apart a distancef from its equilibrium position is given by

Ue f f~k,f!5(
j Þk

@ULJ~a1Sj !1SjRj #1ULJ~a1Sk1f!

1~Sk1f!Rk , ~2!

whereSj is the ‘‘strain’’ at the positionj due to the friction
with the fluid. The strain and the resulting forceRj are de-
fined by the condition

Rj5F~a1Sj !52gM (
l 5I e

j

Vl , ~3!

whereI e5(1,N) stands for the ends of the chain where t
counting starts, andj is within the half segment, i.e.
u j 2I eu<N/2. Equations~2! and ~3! define an effective po-
tential for the breaking process. Note from Eq.~3! that the
strongest force acts on the middle of the chain.

In Fig. 1 we plot the potentialUe f f(k,f) as a function of
separationf for N5100 and for two different monomers
k550 ~curve a) and k530 ~curve b). The first case corre
sponds to the monomer being positioned in the middle
chain while the second one is for the monomer located
center. The fluid velocity isVF50.02 and we use a modera
dampingg50.25vo . As clearly seen from Fig. 1 the break
ing process is more frequent in the middle of the chain th
in any other place, and this frequency should decrease
increasing distance from the center. This observation is c
sistent with the value of the energy barrierE(x), as a func-
tion of the distancex (x!Na/2) to the middle of the chain
It reads

E~x!5Eb14aS x

ND 2

1•••, ~4!

where, for properly chosenVF , e.g.,Eb(N,VF)5Eb(NVF)
~see Table I! the parametera could be made independent o
N.

Now that an effective potential for a polymer in an exte
sional flow has been identified, we can study the fragme
tion process as a generalized thermal activation over a
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rier. Before we start to compute the breaking rates for
polymers, let us discuss briefly the main ideas of the reac
rate theory.

Consider a set of independent particles in a metasta
situation, for example, at the positionx50 of the potential
well of Fig. 1. The particles are in a thermal bath at t
temperatureT, smaller than the activation barrierEb , i.e.,
Eb@kBT. The probabilityp of the particle make a jump ove
the barrier in a time intervalDt is

p5
Dt

t
, ~5!

wheret is the first time passage or the characteristic tim
For Dt!t the crossing probability is small and those ra
events are well described by a Poisson law. Consequently
number of particles in the welln(t) decays asn(t)
5n(0)exp(2t/t). From this follows a practical way to obtai
the characteristic timet and the crossing rateK5t21: we
just have to count the number of particles in the well.

FIG. 1. Effective potential for breaking of a bond at sitek as a
function of the bond elongationf. The intrachain interaction is
given by a 12:6 Lennard-Jones potential and the interaction with
fluid by a viscous force proportional to the relative velocity. Ene
gies are in units of binding energy, distance in units of lattice c
stanta, time is in units oft052p/v0, wherev0 is the maximum
phonon frequency. The chain has 100 particles and the fluid sp
at the chain’s end isVF50.02. We take the friction constant asg
50.25v0 . ~a! k550 and~b! k530.

TABLE I. Main parameters for the effective breaking theor
We use the effective potential to obtain the activation energyEb

and the attempt frequencyn̄K . Here g50.25vo ; the subscriptS
refers to the results obtained from simulations.

N VF
21 Eb ES n̄K

nS a aS

100 50 0.0606 0.0246 4.507 0.0153 0.22 0.3
200 100 0.0606 0.0179 8.938 0.005 23 0.32 0.3
300 150 0.0606 0.0193 13.37 0.003 10 0.31 0.3
1-2
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POLYMER FRAGMENTATION IN EXTENSIONAL FLOW PHYSICAL REVIEW E63 061801
The attempt to obtain reliable values forK is the main
subject of the centennial effort, known as reaction-r
theory@19–22# which, as we shall see, is not always succe
ful. In order to explain the temperature dependence o
chemistry reaction Arrhenius@19# proposed that the reactio
rate K would be the product of the jumping probabilit
exp(2bEb) (b51/kBT) times the attempt frequencyn, i.e.,
the frequency that the particle will try to jump. The Arreh
nius law reads

K5n exp~2bEb!. ~6!

As a first approximation Arrhenius suggested thatn would
be approximately the vibration frequency of the wellna , n
'na5va/2p.

A half-century after Arrhenius, Kramers@20# returned to a
rigorous analysis of the problem. First, he did a ‘‘harmo
zation’’ of the potential as

U~x!5H Eb2
1

2
vb

2~x2xb!2, for x'xb

1

2
mva

2x2, for x'0.

~7!

Herexb andvb/2p are, respectively, the coordinate and t
unstable frequency at the barrier. Then he solved a Fok
Planck equation and rediscovered the Arrhenius law. Mo
over, he found the attempt frequencyn as

n>nK5
va

vb
SAvb

21
g2

4
2

g

2D , ~8!

which, for most of the cases, is of the same order as
Arrhenius result. Kramers main contribution was to put t
Arrhenius law in a more fundamental framework, and to c
attention for two new points. First, it is very important
understand what happens near the top of the barrier, i.e.
unstable motion. Second, the presence of frictiong must be
taken in consideration~for a review, see Ref.@21#!. Since
then it was found that a large number of phenomena in ph
ics and chemistry follows this simple description, Eq.~6!,
given that the energy barrier satisfyEb.kBT.

Let us now turn back to our problem of polymer fragme
tation. From a simple analysis we expect that the total bre
ing rateK will be the sum of all local Kramers rates

K5KK5 (
i 52N/2

N/2

Ki , ~9!

whereKi is the breaking rate at the sitei. In this way the
parameters of Eq.~8! do depend on the position along th
chain, and so doesnK . In order to evaluate Eq.~9!, let us
consider its continuous limit, andva5va(x) and vb
5vb(x). The probabilityP(x) dx of breaking betweenx and
x1dx should follow the Boltzmann distribution

P~x!5C exp@2bE~x!#, ~10!
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with C being the normalization constant andE(x) given by
Eq. ~4!. We define the breaking rate as the total rate to cr
all the local barriers of the breaking potential, Eq.~2!. That
is, we generalize Kramers ideas for a set of local wells to

t215tK
215Nn̄K exp~2bEb!, ~11!

wheret is the characteristic time for an irreversible breaki
and

n̄K5E nK~x!P~x!dx,

is the average of all the Kramers frequencies for the lo
wells.

Unfortunately, Eq.~11! is not able to account for all the
complexity of the breaking phenomena even in chains s
mitted to uniform strain@11–15#. Consequently, some few
improvements need to be done. Since the Arrhenius fa
exp(2bEb) is in agreement with computer simulations@15#,
we propose that only the attempt frequency must be mo
fied. In this way we rewrite Eq.~11! as

t5 f ctK . ~12!

We have introduced the dimensionless factorf c to take care
of possible collective dynamical effects and, as we shall s
it has the ‘‘complexity’’ of the process. We shall call it th
complexity factor. One should bear in mind that for chain
submitted to a homogeneous ‘‘strain’’ and under perio
boundary conditions,f c would be size independent. More
over, if Kramers theory could be easily applied to our situ
tion, f c would be a number of order of unity. We shall retu
to f c , after we present the result of our simulations.

Finally, we use Eq.~10! to compute the ‘‘mean-squar
displacement’’ of breaking bonds, i.e., the variance of lo
tion where the bonds breaks, as

sx
25^x2&5

N2

8a
kBT. ~13!

Now we perform Langevin dynamics simulations by n
merically integrating Eq.~1! for an ensemble of chains sub
ject to different sequences of random forces. The thermo
namic parameters used are the same as those of the effe
model. We ask for the time needed for one of the bonds
the chain to exceed a distanced, i.e., f5ul2ul 21.d. The
number of survival chainsn(t), i.e., those whose distanc
did not exceedd, as function of time, is a Poisson distribu
tion with a characteristic timet(d). We follow the evolution
of t(d) as function ofd until we reach the distanced* ,
wheret(d* ) does not change anymore. This characterizes
irreversible evolution over the barrier, or an irreversibl
breaking, with characteristic breaking timet5t(d* ).

In Fig. 2 we plot the logarithm of the breaking time as
function of the inverse of temperature. The parameters
the same as in Fig. 1. Every experiment involves an
semble of 2000 chains. We see that the figure displays
Arrhenius law similar to that of Eq.~11!. However, the fit
predicts an activation energyEs50.024660.005, while the
1-3
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MAROJA, OLIVEIRA, CIEŚLA, AND LONGA PHYSICAL REVIEW E 63 061801
calculation, given in Table I, yieldsEb50.0606. The attemp
frequencynS is found to be several orders of magnitu
smaller than the Kramers frequencyn̄K . Moreover the acti-
vation energy cannot be smaller thanEb,E(x), Eq. ~4!,
sinceE(x) is itself the minimum possible energy for brea
ing at positionx. Consequently, we shall assume that t
energy is taken directly from the effective potential f
breaking, Eq.~2!, which explains the origin of the factorf c
introduced in anad hocway in Eq.~11!.

In Table I we collect values of parametersa, Eb , andn̄K
as functions ofN and VF . The theoretical values are thos
computed from Eqs.~4!–~13!. We chooseN andVF in such
a way that the chains will have the same energiesEb and,
consequently, similara. The values obtained from simula
tions have the subscriptS.

In Fig. 3 we show the distribution of breaking bonds

FIG. 2. Logarithm of breaking time as function of the inverse
temperature. We use the same parameters as in Fig. 1. The g
displays an Arrhenius rate with activation energyEs50.025.

FIG. 3. Distribution of breaking bonds as function of the po
tion. Parameters are as in Fig. 1 and temperatureT50.018. In the
experiments 20 000 chains were broken. The full line is the Ga
ian fit to the data.
06180
function of position forT50.018. The remaining chain pa
rameters are the same as in Fig. 1. In the experiment 20
chains were broken. The full curve is a Gaussian distribut
fitted to the data, which suggests that the dispersion is ind
in agreement with Eq.~13!. At this point it is perhaps worth-
while to comment on the effect of transverse fluctuatio
We expect that they do not, within our model, affect t
distribution of breaking bonds. However, they do affect, b
factor of the order of 2, the complexity factor. Sincef c is
already unknown by a factor which is at least of the order
104, we will not be concerned here with a full theory t
explain f c .

In Fig. 4 we collect a set of data forsx
2/N2 versus tem-

perature. We scale the temperature byEb in such a way that
different ranges of temperature can be visualized on the s
graph. We use as well a large variation of the damping, i
0.1vo<g<1.0vo . In curve a the empty circles represen
data forg50.25vo , VF50.01, and forN5200. The remain-
ing data of this figure correspond toN5100. Here, the empty
triangles are parametrized byg50.25vo andVF50.02, and
the full triangles are forg50.10vo andVF50.05. The dia-
monds represent simulations withg51.0vo andVF50.02.

The data combine together as an evidence for Eq.~13!. Its
validity is further supported by the simulations forN5300
and VF50.00666~the corresponding data are not shown
the figure!. Additionally, the parametera displays the cor-
rect temperature dependence and the universal~size indepen-
dent! behavior. Interestingly, remarkable agreement is
tained betweenaS50.3260.01 from the minimum square fi
and a50.3260.01 from the effective potential@a50.31,
0.32, and 0.33; see Table I#.

Similar agreement is displayed by curvesb andc of Fig.
4. For curveb, whereg50.25vo andVF50.0237, the theo-
retical values area50.205 andEb50.0100. The simulations
give as50.2160.04. For curvec with g51.0vo , VF

f
ph

s-

FIG. 4. Dispersion of breaking bonds as function of tempe
ture. In order to display several temperature ranges on single g
we scale the temperature byEb . In ~a! the theoretical values are
a50.32 andEb50.0606; the simulations giveaS50.3260.01. In
~b! the theoretical values area50.205 andEb50.0100; the simu-
lations give aS50.2160.04. In ~c! the theoretical values area
50.189 andEb50.00742; the simulations giveaS50.2060.01.
1-4
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POLYMER FRAGMENTATION IN EXTENSIONAL FLOW PHYSICAL REVIEW E63 061801
50.006 we havea50.189 andEb50.00742, while the
simulations predictas50.2060.01. Finally, we shall notice
that for T→0, i.e., sx!1, the Gaussian distribution ap
proaches a Dirac delta function centered at the middle
chain. This explains some of experiments@5,23#, where mol-
ecules are fractured in half.

Why such perfect agreement fora and such discrepan
behavior forEb? As we have mentioned before this colle
tive effect is in the complexity factorf c . This factor has the
chain dynamics, and as well, complex phenomena suc
kink nucleation@12#. Indeed we have proved that the typic
distanced* to an irreversible crossing is larger to a cha
than to a particle in the effective potential Eq.~2!. This of
course contributes to decrease the fragmentation rate.
chain dynamics creates new phenomena that need to b
corporated in the reaction-rate theory. Those phenomena
complex as we increase the system dimensions@13#.

A factor similar tof c was obtained for chains submitted
homogeneous strainS subject to periodic boundary cond
tions @15#; theref c5 f c(T,S) is size independent. That is, fo
given temperature and strain, the ratiot(N1)/t(N2)
5N2 exp@b(E12E2#/N1 is independent off c and, hence, it
can be computed. The results show thatt(N) scales withN
@15#, and that the effective potential provides very accur
values for activation energiesEb . The large value off c and
its dependence onT could be explained by the existence
collective modes, which induce an extra coherent noise
the system. This itself yields time-dependent friction a
modifications to the Langevin equation@14,15,22#.

In our case the fact thata is precisely the same strongl
suggests that the potential, Eq.~2!, and its barrier, Eq.~4!,
should be correct. We used as well other inverse power-
potentials and found that the results are nearly the same,
attempt frequency, an underestimated barrier, and a Gau
-

A.

s.
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distribution of breaking bonds. Thus, deviation from Gau
ian distribution found in some experiments@8# must be due
to an inhomogeneous flow, rather than the chain dynam
As values ofa can be measured and computed in polyme
it would be interesting to carry out experiments measur
both the activation energy and the bond dispersion fo
single chain as function of temperature.

In conclusion we developed a microscopic theory th
gives a simple analytical result for the dispersion of break
bonds of a chain in an extensional flow. It shows as well t
the difference between the computed activation energy
those found from the simulations may be explained by
complexity factorf C , which is responsible for the collectiv
effects, such as memory@14# and nucleation of kinks
@12,24#. As supported by our simulationsf C can assume val-
ues of the order 104 to 106. This explains the result reporte
by Odell @4#, where difference between experiment a
theory for the attempt frequency is of the same order. T
discrepancy is a decreasing function ofm5Eb /kBT, when
we fix Eb and change the temperature, and an increas
function of m when we fix the temperature and changeEb .
Clearly, this proves thatf C is not only a function ofm, as
one would expect from statistical arguments.

Fracture is a complex nonlinear phenomenon, surprisin
complex even in one dimension. At the present state of
art, only for homogeneous chains it is possible to obtain
approximate expression forf C . A full theory for more real-
istic systems is still lacking.
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